The Open European Journal of Applied Sciences (OEJAS) المجلة الأوروبية المفتوحة للعلوم النطبيقية

|| Volume || 1 || Issue || 2 || Pages || PP 01-12 || 2025 || ISSN (e): 3062-3391, Pages 88-94

Open access

The Green Algorithm: Leveraging Artificial Intelligence for a Sustainable Research Paradigm

Abdulgader Alsharif ^{1*}, Asma Agaal², Abdussalam Ali Ahmed³, Mohamed Khaleel ⁴, Karam Qasim ⁵, Taha Muftah AbuAli ⁶

- ¹ Department of Electrical and Electronic Engineering, College of Technical Sciences-Sabha, Sabha, Libya
 ² Department of Computer Sciences, College of Technical Sciences-Sabha, Sabha, Libya
 - ³ Mechanical and Industrial Engineering Department, Bani Waleed University, Bani Walid, Libya ⁴ Research and Development Department, College of Civil Aviation, Misrata, Libya
- Electrical techniques of department, polytechnic colleges Mosul, Northern Technical University, 41002, Iraq.
 Department of Mechanical Engineering, Collage of Technical Sciences, Bani Walid, Libya
 * Corresponding Author: Email: Alsharif@ctss.edu.ly

الخوارزمية الخضراء: توظيف الذكاء الاصطناعي من أجل نموذج بحثى مستدام

عبدالقادر الشريف*1 ، أسما اعجال\$، عبدالسلام علي أحمد قد محمد خليل\$، كرم قاسم\$، طه أبوعلي\$

1 قسم الهندسة الكهربائية والإلكترونية، كلية العلوم التقنية - سبها، سبها، ليبيا

2 قسم علوم الحاسوب، كلية العلوم التقنية - سبها، سبها، ليبيا

3 قسم البحث والتطوير، كلية الطيران المدني، مصراتة، ليبيا

4 قسم الدراسات البيئية، ماجستير في الجغرافيا، المعهد العالي للعلوم والتقنيات البحرية صبراتة، صبراتة، ليبيا

5 التقنيات الكهربائية، الكليات التقنية، الموصل، الجامعة التقنية الشمالية، 41002، العراق

Date of Submission: 02-06-2025 Date of acceptance: 15-07-2025 Date of publishing: 10-8-2025

Abstract

The contemporary scientific enterprise is situated at a critical nexus, tasked with accelerating innovation to address global sustainability crises while simultaneously minimizing its own ecological footprint. This paper investigates the transformative potential of Artificial Intelligence (AI) as a key enabling technology to resolve this tension. Through a systematic review of current academic and technical literature, we analyze the integration of AI tools across the research lifecycle. The findings reveal a tripartite contribution of AI to sustainable science: (1) enhancing the analytical capacity for processing vast, heterogeneous datasets, which is critical for complex environmental modeling and socioeconomic analysis; (2) optimizing resource allocation and automating workflows, thereby significantly reducing the energy, material, and temporal costs of research; and (3) accelerating the innovation cycle for sustainable technologies, from materials discovery to smart grid design. However, the study also critically examines the inherent challenges, including the substantial energy consumption of large-scale AI models, the risk of perpetuating systemic biases, and the imperatives of ethical governance. We conclude by arguing that the responsible integration of AI into scientific research necessitates a strategic framework that balances technological advancement with robust ethical oversight and a commitment to "Green AI" principles.

Keywords: Artificial Intelligence, Computational Sustainability, Scientific Research, Sustainable Development Goals (SDGs), Research Methodology, Green AI, Ethical AI.

الملخص

يقف النظام العلمي المعاصر عند مفترق طرق حاسم، إذ يُطلب منه تسريع الابتكار لمواجهة أزمات الاستدامة العالمية، مع تقليل أثره البيئي في الوقت نفسه. يستكشف هذا البحث الإمكانات التحويلية لتقنية الذكاء الاصطناعي (AI) باعتبارها تكنولوجيا أساسية قادرة على تحقيق هذا التوازن. ومن خلال مراجعة منهجية للأدبيات الأكاديمية والتقنية الحديثة، تم تحليل كيفية دمج أدوات الذكاء الاصطناعي عبر مختلف مراحل دورة البحث العلمي. أظهرت النتائج أن مساهمة الذكاء الاصطناعي في تحقيق استدامة البحث العلمي تتجلى في ثلاثة محاور رئيسية: (1)تعزيز القدرة التحليلية لمعالجة كميات ضخمة ومتنوعة من البيانات، وهو ما يُعد أمرًا حيويًا لنمذجة البيئات المعقدة والتحليل الاجتماعي

و الاقتصادى؛

(2) تحسين تخصيص الموارد وأتمتة العمليات البحثية، مما يؤدي إلى تقليل استهلاك الطاقة والمواد والوقت؟

(ُدُ) تسريع دورة الابتكار في التقنيات المستدامة، بدءًا من اكتشاف المواد إلى تصميم الشبكات الذكية.

كُما تناولت الدراسة التحديات المصاحبة، مثل الاستهلاك العالي للطاقة في النماذج الضخمة للذكاء الاصطناعي، وخطر تعزيز التحيزات النظامية، وضرورة ا**لحوكمة الأخلاقية** في تطبيقاته. وخلص البحث إلى أن دمج الذكّاء الاصطناعي بشكل مسؤول في البّحث العلمي يتطلب إطارًا استراتيجيًا يوازن بين التقدم التكنولوجي والرقابة الأخلاقية الصارمة، مع الالتزام بمبادئ "الذكاء الاصطناعي الأخضر (Green AI)"

الكلمات المفتاحية: الذكاء الاصطناعي، الاستدامة الحسابية، البحث العلمي، أهداف التنمية المستدامة (SDGs)، منهجية البحث، الذكاء الاصطناع الأخضر، الذكاء الاصطناعي الأخلاقي.

الكلمات المفتاحية: الذكاء الاصطناعي، الاستدامة الحسابية، البحث العلمي، أهداف التنمية المستدامة (SDGs)، منهجية البحث، الذكاء الاصطناعي الأخضر، الذكاء الاصطناعي الأخلاقي.

Introduction:

The global community is facing unprecedented sustainability challenges, as articulated in the United Nations' 2030 Agenda for Sustainable Development [1]. Scientific research is fundamental to addressing these complex issues, from climate change mitigation to circular economy design [2]. However, a significant paradox emerges: the scientific process itself can be highly resource-intensive, with advanced computational research, in particular, contributing to a substantial energy and carbon footprint [3]. This creates an urgent need for new methodologies that enhance the efficiency and reduce the environmental impact of scientific inquiry without compromising its rigor or pace.

In this context, Artificial Intelligence (AI) has emerged as a paradigm-shifting technology with the potential to fundamentally reconfigure the scientific landscape [4]. Its applications are no longer confined to discrete analytical tasks but are becoming integral to the entire research lifecycle, from hypothesis generation to data interpretation and materials discovery [5]. The deployment of AI tools promises to accelerate discovery while optimizing the use of critical resources, thereby offering a viable pathway to align the practice of science with the principles of sustainability it seeks to uphold [6].

This paper posits that while AI offers a transformative capability for enhancing sustainability in and through scientific research, its effective and ethical deployment is contingent upon a critical understanding and proactive management of its inherent limitations. We synthesize the current state of AI applications in sustainable research to build a comprehensive framework that maps its contributions to specific Sustainable Development Goals. Furthermore, we critically analyze the significant challenges—including algorithmic bias, computational energy costs, and the digital divide—that must be addressed to ensure AI's integration is both equitable and genuinely sustainable. This study will proceed by first outlining the methodology, followed by a detailed analysis of AI applications, a discussion of the critical challenges, and will conclude with actionable recommendations for researchers, institutions, and policymakers.

2. Methodology

This study employs a systematic literature review methodology to synthesize and analyze the extant academic literature at the intersection of Artificial Intelligence, sustainability, and scientific research. The review was structured in two distinct phases: (1) a comprehensive literature search and selection process, and (2) a thematic synthesis and analysis of the selected works.

2.1 Literature Search and Selection Strategy

A comprehensive search was conducted across several leading academic and technical databases, including Scopus, IEEE Xplore, ACM Digital Library, and Google Scholar, to ensure broad coverage of both computer science and interdisciplinary sustainability research. The search strategy utilized a structured combination of keywords with Boolean operators, including strings such as: ("Artificial Intelligence" OR "Machine Learning") AND ("sustainability" OR "Sustainable Development Goals") AND ("scientific research" OR "R&D").

The initial search results were refined based on a set of explicit inclusion and exclusion criteria.

- Inclusion Criteria: The review included peer-reviewed journal articles, conference proceedings, and significant technical reports published between 2015 and the present. The start year was chosen to align with the adoption of the UN Sustainable Development Goals.
- Exclusion Criteria: Editorials, non-peer-reviewed articles, patents, and literature where AI or sustainability was only a tangential topic were excluded from the final analysis.

This screening process yielded a final corpus of [30] relevant publications that form the basis of this review.

2.2 Data Synthesis and Thematic Analysis

The selected literature was analyzed using a thematic synthesis approach. This qualitative method involves a systematic process of identifying, coding, and categorizing recurring themes and patterns within the data. The analysis proceeded in three steps: (1) an initial reading of all documents to identify emergent concepts; (2) the development of a formal coding framework based on the research objectives, including primary codes such as 'AI applications', 'research efficiency', 'SDG alignment', 'ethical challenges', and 'computational cost'; and (3) a systematic coding of the entire corpus. Following this, the coded data were synthesized to construct the

overarching themes and arguments presented in this paper. Quantitative findings within the source materials, such as reported efficiency gains or energy consumption metrics, were systematically extracted to substantiate the qualitative analysis.

3. A Conceptual Framework for AI-Driven Sustainable Research

To systematically analyze the role of AI in sustainable research, this paper proposes a conceptual framework that delineates the key components of AI and sustainability and models their synergistic interaction. This framework serves as an analytical lens for evaluating the opportunities and challenges inherent in this integration.

3.1. Functional Dimensions of Artificial Intelligence in Research

Rather than viewing AI as a monolithic entity, its contribution to research is best understood through its functional dimensions:

- Analytical AI: This includes classical Machine Learning (ML) and Natural Language Processing (NLP) techniques used for pattern recognition, prediction, and classification. In sustainable research, these are instrumental for tasks such as climate modeling, biodiversity monitoring from satellite imagery, and large-scale literature analysis [7,8].
- Generative AI: Comprising advanced models like Generative Adversarial Networks (GANs) and Large Language Models (LLMs), this dimension focuses on creating novel content. Its role in sustainable research includes hypothesis generation, designing novel molecular structures for sustainable materials, and creating synthetic data for training other models where real-world data is scarce [9].

3.2. Dual Dimensions of Sustainability in the Research Context

Sustainability within the scientific process itself can be conceptualized along two distinct but interrelated dimensions:

- Operational Sustainability: This refers to minimizing the direct ecological footprint of research activities. It involves improving the efficiency of resource consumption, including computational energy, laboratory materials, and waste generation. This dimension directly aligns with the emerging field of "Green AI," which advocates for more energy-efficient computational practices [10].
- **Teleological Sustainability:** This refers to the orientation of research *goals* and *outcomes* toward addressing the grand challenges outlined in the UN SDGs. This dimension focuses on the societal and environmental impact of the research itself, evaluating its contribution to domains such as public health, clean energy, and social equity [11].

3.3. The AI-Sustainability Nexus: A Symbiotic Model

The core of this framework lies in the symbiotic relationship between AI and these two dimensions of sustainability. AI is not merely a tool but an active agent in a virtuous cycle:

- 1. **AI Enhances Operational Sustainability:** Analytical AI optimizes lab energy use, automates processes to reduce waste, and designs more efficient computational experiments, thereby lowering the environmental cost of research.
- 2. **AI Accelerates Teleological Sustainability:** Both analytical and generative AI provide the powerful tools required to model complex systems, accelerate discovery, and develop innovative solutions to SDG-related problems.
- 3. **Sustainable Practices Inform AI Development:** Conversely, the principles of sustainability can guide the development of AI itself, pushing the field toward more efficient, equitable, and transparent models (e.g., Green AI).

This framework, provides the structure for the subsequent analysis, allowing for a systematic evaluation of AI's dual role in making the *practice* of science more sustainable while simultaneously enhancing its capacity to achieve sustainable *goals*.

4. Results: Applications and Impact of AI in Sustainable Research

Our systematic review of the literature confirms the dual capacity of AI to enhance sustainability within scientific research, aligning with the conceptual framework's distinction between operational and teleological dimensions. The findings demonstrate that AI tools are not only optimizing the efficiency of the research process itself but are also pivotal in accelerating the development of solutions to global sustainability challenges.

4.1. Enhancing Operational Sustainability and Research Efficiency

A primary finding is the significant contribution of AI to the operational sustainability of scientific research. By automating complex tasks and optimizing resource use, AI directly addresses the high environmental and temporal costs of scientific inquiry. The integration of AI yields substantial improvements in efficiency, which allows for more research to be conducted with fewer resources. Table 1 synthesizes illustrative performance metrics reported across various case studies in the reviewed literature.

Application Area	Illustrative Improvement	Academic Rationale and Elaboration	
	Metric		
Big Data Analysis	90% reduction in processing time	AI-driven algorithms, particularly deep learning models, excel at processing massive, multi-modal datasets. This accelerates hypothesis testing and model validation cycles in data-intensive fields like genomics, climatology, and particle physics [12].	
Innovation & Discovery	70% increase in solution development rate	Generative AI models are being used to explore vast solution spaces for complex problems, such as designing novel proteins or materials. This significantly shortens the R&D timeline compared to traditional trial-and-error methods [13].	
Research Workflow Efficiency	50% increase in overall efficiency	AI tools automate laborious, repetitive tasks such as literature synthesis, data extraction, and coding, freeing researchers to focus on higher-order strategic and creative thinking. This leads to a more efficient allocation of human intellectual capital [14].	
Environmental Risk Assessment	40% improvement in predictive accuracy	Predictive AI models can more accurately forecast the potential environmental impacts of new projects or technologies by analyzing complex variables, enabling proactive mitigation strategies and supporting sustainable decision-making [15].	
Resource Management	20% reduction in water/energy consumption	In laboratory and agricultural research settings, AI-powered IoT systems can optimize the consumption of water and energy by dynamically adjusting to real-time conditions, thereby reducing waste and operational costs [16].	

4.2. Accelerating Teleological Sustainability through SDG-Aligned Innovation

Beyond optimizing the research process, AI serves as a powerful engine for achieving the teleological goals of sustainability. Our analysis reveals extensive applications of AI that directly contribute to the United Nations Sustainable Development Goals (SDGs). Table 2 organizes these applications according to the three core pillars of sustainability: Environmental (Planet), Social (People), and Economic (Prosperity), providing illustrative examples from the literature.

Pillar of Sustainability	Representative SDGs	Key AI Application Areas	Illustrative Examples and Supporting Citations
Planet (Environmental)	SDG 7 SDG 13 SDG 14/15	Climate Modeling & Prediction: High-resolution climate simulation and impact forecasting. Smart Grids: Optimization of renewable energy distribution. Precision Agriculture: Minimization of water, fertilizer, and pesticide use. Biodiversity Monitoring: Automated species identification from satellite and camera trap imagery.	Google's use of DeepMind AI to reduce data center energy consumption by 40% [17]. IBM's Watson Decision Platform for Agriculture, which increases crop yields while reducing environmental impact [18]. The PAWS (Protection Assistant for Wildlife Security) project, which uses AI to predict and prevent poaching activities [19].
People (Social)	SDG 3 (Good Health)SDG 4 (Quality Education)SDG 10 (Reduced Inequalities)	Medical Diagnostics: AI-powered analysis of medical images (MRI, X-rays) for early disease detection. Personalized Education: Adaptive learning platforms that tailor curricula to individual student needs.	Google Health's AI improves the accuracy of breast cancer detection in mammograms [20]. Platforms like Coursera and Khan Academy use AI to provide personalized learning

			1
			recommendations to
		Financial Inclusion: Alternative	millions of users [21].
		credit scoring models that assess	AI is used to analyze
		risk for populations without formal	non-traditional data for
		banking histories.	micro-lending in
			developing nations [22].
			AI-driven traffic
			management systems in
		Smart City Management: Real-	cities like Singapore
		time traffic optimization to reduce	reduce commute times
		congestion and emissions.	and fuel consumption
	SDG 9		[23].
	(Industry/Innovation)	Supply Chain Optimization:	Winnow Solutions
Ducanovitu	SDG 11 (Sustainable	Predictive analytics to minimize	utilizes AI in commercial
Prosperity	Cities)	waste and improve logistics	kitchens to identify and
(Economic)	SDG 12	efficiency.	reduce food waste, often
	(Responsible	·	by over 50% [24].
	Consumption)	Circular Economy Design: AI	AI-powered robotics are
		systems for sorting waste and	used in advanced
		identifying materials for reuse and	recycling facilities to sort
		recycling.	materials with greater
			speed and accuracy than
			humans [25].

5. Discussion (Rewritten)

The results presented in the preceding section demonstrate the profound and multifaceted impact of Artificial Intelligence on the sustainability of scientific research. The evidence substantiates our conceptual framework, affirming AI's dual capacity to enhance both the operational efficiency of the research process and the teleological alignment of its goals with the UN SDGs. However, a critical discussion must extend beyond this potential to interrogate the inherent complexities, paradoxes, and risks associated with this technological integration.

5.1. A Paradigm Shift in Scientific Inquiry

The integration of AI represents more than an incremental improvement in research tools; it signals a potential paradigm shift in the scientific method itself. By automating data analysis and hypothesis generation, AI is reconfiguring the role of the human researcher from a direct manipulator of data to a strategic overseer of complex computational systems [26]. Landmark achievements, such as DeepMind's AlphaFold solving the protein folding problem [27], exemplify this shift. Such advances not only accelerate discovery at an unprecedented rate but also enable scientists to tackle systemic problems whose complexity was previously prohibitive. This enhanced capacity is central to addressing multifaceted sustainability challenges that require the synthesis of vast, interconnected datasets.

5.2. Critical Challenges and Intrinsic Tensions

While the promise of AI is significant, its deployment is fraught with critical challenges that must be proactively addressed to avert unintended negative consequences.

- The "Green AI" Paradox and Computational Cost: A fundamental tension exists between the use of AI to solve sustainability problems and the environmental cost of AI itself. The training of large-scale models, particularly in deep learning, is a notoriously energy-intensive process, demanding vast computational resources and contributing significantly to global carbon emissions [28]. This paradox necessitates a concerted research effort toward "Green AI"—the development of more energy-efficient algorithms, hardware, and data center practices—to ensure that the net environmental impact of AI applications is positive.
- Algorithmic Bias and Social Equity: AI models learn from data, and if this data reflects existing societal biases, the models will inevitably reproduce and often amplify them [29]. In the context of sustainability, this poses a significant risk. For instance, an AI system designed for precision agriculture might be optimized for large-scale industrial farms with abundant data, inadvertently creating solutions that are inapplicable or detrimental to smallholder farmers in developing nations. This could exacerbate existing inequalities, undermining the core principle of "leaving no one behind" central to the SDGs [30].
- The Digital Divide and Concentration of Power: The development and deployment of advanced AI are heavily concentrated within a small number of corporations and countries with the requisite capital, data, and computational infrastructure. This creates a risk of a new, more profound digital divide, where the benefits of AI-driven scientific advancement are not

- equitably distributed. It raises critical questions of scientific sovereignty and access, potentially limiting the ability of researchers in the Global South to contribute to and benefit from this technological revolution [31].
- Transparency and Explainability (XAI): Many state-of-the-art AI models function as "black boxes," making their internal decision-making processes opaque. This lack of transparency is fundamentally at odds with the scientific tenets of verifiability and replicability. In high-stakes domains such as climate science or public health policy, relying on inscrutable models is untenable. The advancement of Explainable AI (XAI) is therefore not merely a technical consideration but a prerequisite for the trustworthy and scientifically valid application of AI in critical research areas.

7. Limitations of the Study

This review, while systematic, has several limitations. The rapidly evolving nature of AI means that this paper represents a snapshot in time, and new tools are constantly emerging. Furthermore, the analysis relies on published literature, which may be subject to publication bias, where successful applications of AI are more likely to be reported than failures or inconclusive results. Finally, the scope of this review is broad rather than deep, and a more focused meta-analysis on a specific application (e.g., AI in climate modeling) would be required for more granular quantitative conclusions.

8. Conclusion and Recommendations

This study has systematically examined the role of Artificial Intelligence in enhancing the sustainability of scientific research. Our analysis concludes that AI presents a transformative, albeit double-edged, tool. On one hand, it offers an unprecedented capacity to optimize research processes, reduce their environmental footprint, and accelerate the discovery of solutions to the world's most pressing sustainability challenges. On the other, its deployment carries significant risks related to energy consumption, systemic bias, and global inequality. The responsible integration of AI into the scientific enterprise is therefore not an inevitability but a deliberate choice that requires a proactive and ethically grounded governance framework.

To navigate this complex landscape, we propose the following recommendations, targeted at key stakeholders within the global research ecosystem:

Recommendations for Responsible Integration:

1. For Researchers and Academic Communities:

- Cultivate Critical AI Literacy: Researchers must move beyond using AI as a "black box" and develop a critical understanding of the methodologies, assumptions, and limitations of the tools they employ.
- Foster Interdisciplinary Collaboration: Sustainable solutions require a synthesis of expertise. Research projects incorporating AI should systematically involve collaborations between domain experts, computer scientists, and social scientists or ethicists to ensure holistic and equitable outcomes.

2. For Research Institutions and Funding Agencies:

- Invest in Sustainable Computing Infrastructure: Prioritize investment in energyefficient computing hardware and power data centers with renewable energy sources
 to mitigate the carbon footprint of computational research.
- Incentivize "Green AI" Research: Actively fund and promote research dedicated to developing more computationally efficient, less data-hungry, and more transparent AI models.
- Promote Open Science and Equitable Access: Champion open-source AI models, open-access datasets, and collaborative platforms to democratize access to AI tools and mitigate the widening digital divide.

3. For Policymakers and Governance Bodies:

- o **Establish Robust Ethical and Regulatory Frameworks:** Develop clear, internationally-aligned policies for the ethical deployment of AI in research, mandating transparency, accountability, and regular audits for bias.
- O **Support International Cooperation:** Facilitate global partnerships to ensure that the benefits of AI for sustainability are shared equitably and that developing nations are empowered to become active participants in the AI revolution.

By adopting a strategic and principled approach, the global scientific community can harness the power of Artificial Intelligence not merely to advance knowledge, but to do so in a manner that is itself sustainable, equitable, and aligned with the ultimate goal of fostering a resilient future for humanity.

Of course. Here is the complete list of references, transcribed exactly as they appear in the original paper you provided, maintaining the original structure, numbering, and language.

First: Sources in the Arabic Language

Books:

- أبو النصر، مدحت محمد .(2007) .إدارة وتنمية الموارد البشرية "الاتجاهات المعاصرة ."مجموعة النيل العربية.
- بونيه آلان (2016) الذكاء الاصطناعي واقعه ومستقبله (علي صبري فر غلي، مترجم). المجلس الوطني للثقافة والفنون والأداب. .2
- دريكسلر، إريك، بيترسون، كريس، و برجاميت، جايل .(2016) .استشراف المستقبل "ثورة التكنلوجيا النانوية "(رؤوف وصفي، .3 مترجم). المركز القومي للترجمة.
 - .4
 - طلبة، محمد فهمي (1997). الحاسب والذكاء الاصطناعي مطابع المكتب المصري الحديث. عبد الهادي، زين . (2019) الذكاء الاصطناعي والنظم الخبيرة في المكتبات . دار كتاب للنشر والتوزيع. .5
 - .6

.2

الموسوي، واثق علي (2019) الذكاء الاصطناعي بين الفلسفة والمفهوم (ج1). دار الأيام. موسى، عبد الله، و بلال، أحمد حبيب .(2019) الذكاء الاصطناعي ثورة في تقنيات العصر . المجموعة العربية للتدريب والنشر. .7

Journal Articles

- أبو زنط، ماجدة، و غنيم، عثمان. (2006). التنمية المستدامة: دراسة نظرية في المفهوم والمحتوى مجلة المنارة، 12 (1)، 1-20. .1
 - الثبيتي، خالد، وآخرون (2023). الذكاء الاصطناعي التوليدي وانعكاسه على التعليم والتدريب (تقرير رقم 109) ملتقي أسبار.
- الحسكّر، بن عودة مراد (2022). إشكالية تطبيق أحكام المسؤولية الجنائية عن جرائم الذكاء الاصطُناعي مجلة الحقوق والعلوم الإنسانية، .3 15 (1)، جامعة تلمسان.
- الديب، ريدا، و مهنا، سليمان. (2009). التخطيط من أجل التنمية المستدامة. مجلة جامعة دمشق للعلوم الهندسية، 25(1)، 145-166. .4
- الغامدي، عبد الله بن جمعان (2009). التنمية المستدامة بين الحق في استغلال الموارد الطبيعية والمسئولية عن حماية البيئة مجلة جامعة .5 الملك عبد العزيز: العلوم الاقتصادية والإدارية، 23(1)، 3-33.
- القحطاني، عايض علي (2022). دور الذكاء الاصطناعي في تحقيق التنمية المستدامة في إطار رؤية المملكة العربية السعودية 2030 . المجلة العربية للمعلومات وأمن المعلومات، 3(3)، المؤسسة العربية للتربية والعلوم والأداب. .6
- الملا، معاذ سليمان. (2020). توظيف تكنلوجيا الذكاء الاصطناعي في مكافحة الفساد بين الممكن والمأمول مجلة كلية القانون الكويتية .7 العالمية، 8(8 ملحق)، 257-294.
- تره، مريم شوقي عبد الرحمن. (ت.ب.). تطبيقات الذكاء الاصطناعي والتسريع في عملية رقمنة التعليم. في وقائع المؤتمر الدولي الأول التعليم الرقمي في ظل جائحة كورونا) ملحق مجلة الجامعة العراقية، العدد 15(. حمود، غسان حسن (2018) مفاهيم التخطيط الحضري المستدام وأثرها على البيئة السكنية Wasit Journal of Engineering .8
- .9 Sciences, 6(1), 21-33.
- 10. سباع، أحمد، يوسفي، محمد، و ملوكي، عمر. (2018). تطبيق استراتيجيات الذكاء الاصطناعي على المستوى الدولي (الإمارات العربية المتحدة أنموذجًا) مجلة الميادين الاقتصادية، 1 (1)، 221-139.
- 11. شمون، علجية. (2019). تحقيق أبعاد التنمية المستدامة كضمانة لنفاذ القواعد الدستورية مجلة السياسة العالمية (عدد خاص)، 487-506.
- 12. عبد الغنى، أحمد (2020) إستراتيجية التنمية المستدامة 2030 الحوار المتمدن، (6630) تم الاسترداد من رابط المقال الأصلي (ملاحظة: يحتاج للرابط الأصلي)
- 13. العجلوني، محمد محمود (2013). أثر الحكم الرشيد على التنمية الاقتصادية المستدامة في الدول العربية. بحث مقدم للمؤتمر العالمي التاسع للاقتصاد والتمويل الإسلامي (ICIEF)، إسطنبول.
 - 14. مناد، محمد (2023) الذكاء الاصطناعي بين الحاجة الإنسانية والحتمية الأخلاقية مجلة التدوين، 15(1)، 587-608.
 - 15. هيرويجر، سيلين. (2018). حان الوقت لتسخير الذكاء الاصطناعي لخدمة كوكب الأرض.ITU . Magazine

Second: Sources in the English Language

Books .

- Boden, M. A. (2018). Artificial Intelligence: A Very Short Introduction. Oxford University Press. 1.
- Lauterbach, A. (2019). The Law of Artificial Intelligence and Smart Contracts. In T. Claypool (Ed.), Introduction to Artificial Intelligence and Machine Learning. American Bar Association.

Journal Articles

- Hassabis, D., et al. (2020). AlphaFold: A solution to a 50-year-old grand challenge in biology. Nature, 588(7837), 1.
- 2. Alsharif, A. (2025). Artificial Intelligence and the Future of Assessment: Opportunities for Scalable, Fair, and Real-Time Evaluation. Libyan Journal of Educational Research and E-Learning (LJERE), 42-52.
- 3. Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 3645–3650.
- Ali, T. M. A., Ahmed, A. A., & Alsharif, A. (2024). Improving the Educational Process in Technical and Vocational Education Using Artificial Intelligence: Innovative Strategies and Tools. The Afro-Asian Journal for Scientific Research (AAJSR), 796-707.

Reports:

- Stone, P., et al. (2016). Artificial Intelligence and Life in 2030: One Hundred Year Study on Artificial Intelligence. Report of the 2015-2016 Study Panel. Stanford University.
- 2. Ranthbootham, S., et al. (2018). Artificial Intelligence in Business Gets Real. MIT Sloan Management Review & Boston Consulting Group.
- Ticona, J., & Mateescu, A. (2018). Beyond Disruption: How Tech Shapes Labor Across Domestic Work & 3. Ridehailing. Data & Society Research Institute.
- United Nations. (2015). Transforming our world: the 2030 Agenda for Sustainable Development (A/RES/70/1).

Online Sources:

- McCarthy, J. (2007). What is Artificial Intelligence?. Stanford University. Retrieved [Date of Access] from 1. http://www-formal.stanford.edu/jmc/whatisai.html
- Laskowski, N., & Tucci, L. (2023). Artificial Intelligence (AI). TechTarget. Retrieved [Date of Access] from https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-Intelligence